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Foreword

The verification of sonic boom propagation codes has long been the desire of George
T. Haglund. Working on supersonic transports virtually from their conception, he
developed many of the sonic boom analysis tools used at Boeing. He spearheaded
initial assessment of sonic boom characteristics of low-boom concepts at Boeing and
originally proposed the idea of flying two aircraft in tandem to generate a shaped,
long duration sonic boom source. Such a signature would require a very long

propagation distance to completely evolve into an N-wave and thus provide the ideal
source to test propagation codes for their resolution of fine detail in the sonic boom
waveform. Recent near-field pressure signature measurement of a single supersonic
aircraft using a novel probing technique lays a foundation for such propagation code
verification and ultimate demonstration of the viability of low-boom supersonic

transport design.
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Summary

Propagation Codes

A major thrust of recent developments to sonic boom propagation codes has been to
more properly incorporate air absorption effects. This effort has been made practical
by the general availability of improved computing power since absorption effects are
based on inclusion of "higher order" terms in the basic thermodynamic equations.
These terms were previously discarded in order to focus on the basic phenomena of
non-Hnear wave steepening, formation of shocks, and shock propagation according
to the equal-area rule. The higher order terms render a closed-form solution
impossible and the equations are thus solved using an iterative technique over small
steps along the wave propagation.

The sonic boom propagation codes reviewed in this study, SHOCKN and ZEPHYRUS,
implement current theory on air absorption using different computational concepts.
Review of the codes with a realistic atmosphere model confirm the agreement of
propagation results reported by others for simplified propagation conditions.
ZEPHYRUS offers greater flexibility in propagation conditions and is thus preferred
for practical aircraf_ analysis.

Comparison to Measurement

The ZEPHYRUS code was used to propagate sonic boom waveforms measured

approximately 1000 feet away from an SR-71 aircrai_ flying at Mach 1.25 to 5000
feet away. These extrapolated signatures were compared to measurements at 5000
feet. Pressure values of the significant shocks (bow, canopy, inlet and taft) in the
waveforms are consistent between extrapolation and measurement. Of particular
interest is that four (independent) measurements taken under the aircraf_ centerline
converge to the same extrapolated result despite differences in measurement
conditions. Extrapolated and measured signature durations disagree because the
measured duration of the 5000 foot signatures is either much longer or shorter than
would be expected. The measured durations are 0.07 seconds, 0.21 seconds and 0.15
seconds where a value of 0.1 might be expected.

These duration anomalies may have been introduced by the simplified method of
converting the measured pressure at a position relative to the SR-71 to a time
history at a fixed point in space. A more refined procedure has been suggested that
accounts for changes in SR-71 speed and position of the probe aircraft during
pressure measurement. Implementation of this procedure by others indicates a much
better resolution of near and far measurements.



Introduction

Absorption

Absorption of sound in air is primarily composed of five mechanisms: viscosity,
thermal conduction, bulk viscosity and vibrational relaxation of oxygen and nitrogen.
Viscosity and thermal conduction dissipate sound pressure into heat through vorticity
and thermal conduction. Bulk viscosity summarizes the exchange of energy between
rotational and translational modes of molecular motion (primarily of oxygen and

nitrogen molecules) as the air strives for thermal equilibrium after passage of the
pressure signature. Vibrational relaxation is another process whereby sound
pressure is converted to heat by increasing the vibrational energy of the (primarily
oxygen and nitrogen) molecules.

In addition to air absorption effects, shock discontinuities introduce pressure losses.
Non-linear steepening of the waveform also redistributes energy from low
frequencies to high frequencies, which are more effectively attenuated in air.

Reference 1 is recommended as excellent background information on sonic boom

propagation phenomenon, including absorption effects.

Code Development

During the last 25 years, the effects of molecular relaxation on sound propagation
have been developed in the acoustic community. More recently, this knowledge has
been applied to sonic boom propagation through NASA High Speed Research funding
of university studies at University of Mississippi, Pennsylvania State University and
the University of Texas. Methods are now available for predicting the important
effect of molecular absorption on sonic boom propagation.

These methods trace their genesis to the 1973 doctoral dissertation by Pestorius 2.
The Pestorius algorithm was developed for the case of plane waves propagating in a
tube, accounting for nonlinear distortion, dispersion and absorption. Nonlinear
distortion as the wave propagates without losses leads to multivalueness in the
waveform, which is resolved using weak-shock theory. Weak-shock theory uses the
assumption of simple wave flow on either side of a shock to allow calculation of shock
location and strength. It allows dispersion of wave pressure to heat through thermal
conduction, supplementing the tube boundary dispersion (and absorption) explicitly
included by the geometry of the Pestorius' problem. In his code, non-linear
distortion, shock strength and shock location are calculated in the time domain and
dispersion and absorption in the frequency domain with Fast Fourier Transforms to
switch back and forth between the two domains.

The Pestorius code became the basis for two approaches to more fully account for

absorption effects as other researchers adapted the code to their (more general)
problems. One approach was implemented by Anderson 3, who dropped the weak-

shock theory and modeled air as a thermoviscous fluid (that is, added the effect of
energy dissipation due to thermal conduction and viscosity). This application
depends on a large number of points to properly model shocks in the waveform and
small propagation step sizes to keep the waveform single-valued. The Anderson



codewas later extended to include molecular relaxation effects4and atmospheric
stratification with the resulting computer codenamed SHOCKN 5. Since SHOCKN
wasused to analyze stronger shocksand longer duration waveforms than Anderson
was concerned with, SHOCKN has a special absorption routine 6to ensure single-
valueness of the waveform. If shock amplitude is sufficiently strong, the viscosity of
the air is artificially increased such that at least ten points are always used to
describe the shock. This normally only occurs away from the ground so that normal
absorption smooths out any unrealism in the waveform.

The other significant approach was taken by Robinson 7 in his computer code
ZEPHYRUS _. The air is modeled as a thermoviscus fluid with stratified

inhomogeneities, as in SHOCKN, but non-uniform, stratified winds are also
allowed. Molecular relaxation effects are included. A three-dimensional ray theory
is used to generate ray paths associated with the sonic boom shock front.
Propagation through reflections and weak (line-like) caustics is allowed. Waveform
propagation along these raypaths starts with the basic Pestorius marching algorithm,
including weak-shock theory, with the updated absorption model for attenuation and
dispersion effects. Shocks that are too strong to be modeled by the number of points
in the waveform are handled by weak-shock theory and carried as discontinuities.

These methods have been authoritatively compared by Cleveland 5 on the basis of

theory using idealized propagation conditions to focus on absorption effects and
shock modeling. The current work validates these propagation methods through a
more realistic atmosphere.

Flight testing of NASA's SR-71 in 1995 provides data for evaluating the accuracy in
predicting detailed sonic boom characteristics. However, data available for this study
provide only a short range (1000 feet to 5000 feet from the aircraft) of extrapolation
so the absorption effects are minimal. Nevertheless, pressures are predicted

reasonably well. Inconsistencies with measured duration inhibit accuracy of
predicted duration, but a proposed refined method of data reduction promises to
resolve most of these effects.



SHOCKN Code

Sum.mary

SHOCKN calculates nonlinear distortion in the time domain and all other effects in

the frequency domain. The Fast Fourier Transform is used to transfer between the
time and frequency domains. For strong shocks, such as near the source, shocks are
artificially thickened by extra viscous attenuation that is amplitude dependent.
When the shock is weak enough, standard air absorption effects are modeled.

Since SHOCKN was basically written to verify certain absorption concepts, it is
limited to propagation along the ray directly below the aircraft through the
atmosphere coded into the program. The atmosphere does not include wind.
Propagation halts at the ground so that ray reflection leading to secondary booms is
not allowed. The program allows signatures at intermediate altitudes to be
calculated.

A copy of the SHOCKN code was obtained from Jim Chambers of the University of
Mississippi and incorporated into the Boeing Sonic Boom Toolbox. To run the code,
the user supplies the following parameters:

Aircraft (source) altitude - feet

Aircraft body length - feet
Distance from aircraft to input waveform - feet
Aircraft Mach number

(any intermediate altitudes for output)
(special value for number of points in signature)
(special value for waveform sample rate)

In addition, the input waveform is supplied as a list of coordinates, time (seconds)

and pressure (psf).

Atmosphere Model

SHOCKN uses an atmosphere profile generated by a function within the code. The

code given to Boeing was set up with an isothermal atmosphere where, although
temperature is constant, gravity effects cause pressure and density to decrease
exponentially with altitude. The atmosphere function was rewritten to additionally
allow use of the standard atmosphereg. ' The relative humidity is constant at 20%. A

copy of the revised atmosphere function is presented as follows:

-4-



Subroutine Atmos (AI, t, p, r, hum)
C

C Altitude (AI) in meters (input)

C Temperature (t) in K (output)

C Pressure (p) in atm. (output)

C Density (r) in kg/m**3 (output)

C relative humidity(hum) in %. (output)

C

INCLUDE "/acct/hwp2093/etc/boom/shockn/code/parameters"

c Standard atmosphere model included by Hugh Poling, March 6,

c Equations are from Anderson's book "Introduction to Flight"

c We start with given altitude in meters, AI.

c GRADIENT TROPOPAUSE

if ( A1 .it. ii000.0 ) then

c temperature in Kelvin

t=T0std-(0.0065*Al)

c pressure in arm

p=p0std*exp(ATM CONST*alog(t/T0std))

c density in kg/m_3

r=r0std*exp((ATM_CONST-l.0)*alog(t/T0std))
c ISOTHERMAL STRATOSPHERE

elseif (AI .it. 25000.0 ) then

c establish parameters at base of layer

C (repeat of Tropopause equations)

hl=ll000.0

tl=T0std- (0. 0065"hi)

pl=p0std*exp (ATM_CONST*alog (tl/T0std))

rl=r0std*exp ( (ATM_CONST-I. 0) *alog (tl/T0std))

1996

(pp.56-61)

c next, calculate parameters at altitude, A1

t=tl

p=pl*exp ( GO* (hl-Al) / (GAS_CONST*tl) )

r=rl* (p/pl)
else

stop ' ERROR - standard atmosphere not defined above 25000 m'

endif

hum=20.

write

return

end

(15,*) AI,' ',t,' ',p,' ',r,' ',hum

Sample Case

The sample case used to demonstrate operation of the SHOCKN and ZEPHYRUS
codes is based on the numerical exercise reported by Cleveland 5, for reasons

explained in the section comparing the two codes. This section is only concerned
with setting up inputs to SHOCKN and running the program.

The input pressure signature is a "ramp" waveform at a distance of 183m (600 ft)
directly below the source. The format used in SHOCKN is an uncommented file with
two columns of data. The columns are the waveform time (seconds) and pressure

(psf). Note that the beginning and end of the waveform must be set to zero pressure,
as shown following.

The flight altitude of the source is specified to be 14,630m (48,000 ft) and the Mach
number is 1.8.



-0 0045268

-0 0037723

-0 0023389

-0 0022634

0 0021843

0 0066321

0 0110798

0 0137691

0 0164584

0 0191477

0 0218370

0 0245263

0 0272155

0 0299048

0 0325941

0 0352834

0 0379727

0 0406620

0.0433513

0.0460406

0.0487299

0.0514192

0.0541085

0.0567977

0.0594870

0.0621763

0.0648656

0.0675549

0.0702442

0.0729335

0.0756228

0.0783121

0.0810014

0.0836907

0.0863799

0.0890692

0.0917585

0.0944478

0 00000000

0 77863348

1 55726409

2 33589768

1 99676502

1 65763271

1 31850016

1 35719407

1 39589095

1 43458498

1 47327888

1 51197278

1 55066967

1 58936357

1 62805748

1 66675138

1 70544529

1 74414217

1.78283620

1.82153010

1.86022413

1.89892077

1.93761492

1.97630870

2.01500273

2.05369973

2.09239340

2.13108754

2.16978145

2.20847821

2.24717236

2.28586602

2.32456017

2.36325717

2.40195084

2.44064474

2.47933888

2.51803565

0.0971371 2.55672956

0.0998264 2.59542346

0.1025157 2.63411736

0.1052050 2.67281437

0.1078943 2.71150827

0.1105835 2.75020218

0.1132729 2.78889608

0.1159621 2.82759309

0.1186514 2.86628699

0.1213407 2.90498090

0.1240300 2.94367480

0.1523103 -2.51619887

0.1549996 -2.47750497

0.1576889 -2.43881106

0.1603782 -2.40011406

0.1630675 -2.36142039

0.1657568 -2.32272625

0.1684461 -2.28403234

0.1711353 -2.24533558

0.1738246 -2.20664167

0.1765139 -2.16794753

0.1792032 -2.12925386

0.1818925 -2.09055686

0.1850000 -5.09709215

0.1887631 -1.71722066

0.1907429 -1.52609026

0.1929323 -1.37998676

0.1952548 -1.26247084

0.1976698 -1.16484416

0.2001530 -1.08188438

0.2026888 -1.01019764

0.2052661 -0.94744158

0.2078771 -0.89192647

0.2105160 -0.84239167

0.2131781 -0.79787028

0.2158601 -0.75760704

0.3000000 0.00000000

Outputs

SHOCKN provides files to plot up the signature at the specified distances from the
aircraft. As the code runs, it supplies the following commentary:

SHOCKN run with inputs: -a 48000 -b 300 -d 600

ramp.wave

INPUT: Aircraft Altitude (m) 14630.40

(ft) 48000.00

INPUT: Aircraft Mach Number 1.800000

INPUT: Aircraft Body Length (m) 91.44000

(ft) 300.0000

INPUT: Input waveform distance (m) 182.8800

(ft) 600.0000

INPUT: sample rate 27600.00

INPUT: Points in spectra: 2 ^ 14 = 16384

-dx 4800 24000 -m 1.8

6



75 points read in with sample rate of 27600.0 Hz respaced to
read in initial time = -0.004527 final time = 0.299953

respaced initial time= -0.004527 final time= 0.300000

8405 points

600.0 feet)from airplane

RiseTime=0.107807 seconds

4799.9 feet)from airplane

1 The wave form at 182.9 meters (

pmax= 2.9436 psf imx= 7538

pmin=-5.0886 psf imn= 9221
1 The wave form at 1463.0 meters (

pmax= 1.1261 psf imx= 6825

pmin=-l.1555 psf imn= 9836 RiseTime=0.091190 seconds

Switching from "FAIR" to "AIR" absorption at alt 13165.84 meters

1 The wave form at 7315.2 meters ( 23999.7 feet)from airplane

pmax= 0.7328 psf imx= 5906

pmin=-0.6061 psf imn= 9733 RiseTime=0.069129 seconds

1 The wave form at 14630.4 meters ( 47999.4 feet)from airplane

pmax= 0.7793 psf imx= 5690

pmin=-0.6432 psf imn= 10181 RiseTime=0.059572 seconds

Case description: DIST00183 SHOCKN wave with 2.944 psf max and 0.107807 sec

risetime

OVERALL LEVEL OASPL = 127.191 dB

A-WEIGHTED LEVEL SPLAW = 92.522 dB

C-WEIGHTED LEVEL SPLCW = 112.770 dB

PERCEIVED LEVEL SPLPL = 110.472 dB

Case description: DIST01463 SHOCKN wave with 1.126 psf max and 0.091190 sec

risetime

OVERALL LEVEL OASPL = 118.813 dB

A-WEIGHTED LEVEL SPLAW = 81.286 dB

C-WEIGHTED LEVEL SPLCW = 100.515 dB

PERCEIVED LEVEL SPLPL = 95.090 dB

Case description: DIST07315 SHOCKN wave with 0.7328 psf max and 0.06913 sec

risetime

OVERALL LEVEL OASPL = 114.814 dB

A-WEIGHTED LEVEL SPLAW = 81.657 dB

C-WEIGHTED LEVEL SPLCW = 94.088 dB

PERCEIVED LEVEL SPLPL = 95.070 dB

Case description: DISTI4630 SHOCKN wave with 0.7793 psf max and 0.05957 sec

risetime

OVERALL LEVEL OASPL = 115.405 dB

A-WEIGHTED LEVEL SPLAW = 72.527 dB

C-WEIGHTED LEVEL SPLCW = 93.691 dB

PERCEIVED LEVEL SPLPL = 86.281 dB

Case description: DISTI4630 SHOCKN wave with 0.7793 psf max and 0.05957 sec

risetime

Ground Reflection Factor 1.9

OVERALL LEVEL OASPL = 120.980 dB

A-WEIGHTED LEVEL SPLAW = 78.102 dB

C-WEIGHTED LEVEL SPLCW = 99.266 dB

PERCEIVED LEVEL SPLPL = 92.209 dB

7



ZEPHYRUS Code

Summary

ZEPHYRUS propagates using weak shock theory in the time domain and applies
absorption and dispersion effects in the frequency domain. Transfers between the
two are done with the Fast Fourier Transform and occur when sufficient absorption
has "accumulated" over the propagation distance. This happen over approximately
twenty steps. The weak shock theory resolves shocks in the waveform between
applications of absorption.

A copy of ZEPHYRUS was obtained from Dr. Leick Robinson, now at SAIC. The
three modules, "TSPLINE" to develop continuous curvefits of the atmosphere,
"RAYTRACE" to calculate the ray paths, and "RAYPROP" to propagate a waveform
along a ray path were installed into the Boeing Sonic Boom Toolbox.

In addition to the atmosphere profile described following, parameters describing the
ray paths and waveform are needed. Examples of these files are included in the
sample case.

Atmosphere Model

Zephyrus uses an atmosphere supplied by the user. The standard atmosphere profile
used in this sample case looks like the following:



** ZEPHYRUS style air profile from ARAP .HAG output file **
***************************************************************************

** This file constructed under the assumptions: **

** aircraft heading is 90 degrees compass, **

** North = ZEPHYRUS Y-direction per air navigation convention. **

** wind direction read from ARAP is based on **

** (0 degrees compass = ZEPHYRUS Y-direction) + 180 degrees, **

** but output ZEPHYRUS angle is measured from **

** X-dir per Conventional Cartesian geometry. **
*W *W

** temperature and wind data are supplied at the same **
** list of altitude values **
WW *W

ATMOSPHERE FOR U.S. 1962 STANDARD ATMOSPHERE, NO WIND

Altitude Sound Speed wind Velocity Wind Velocity Air

along flight across flight Density

path path

(meters) (m/s) (m/s) (m/s) (kg/m3)

0

3O5

610

1219

1829

2438

3048

3658.

4267.

4877.

5487.

6096.

7011.

7925.

8839.

9754.

11019.

12192.

13411.

14326.

15240.

16764.

18288.

19812.

21336.

340.3052 0.00 0.00 1.22500883

339.1320 0.00 0.00 1.18957639

337.9581 0.00 0.00 1.15491395

335.5945 0.00 0.00 1.08793441

333.2142 0.00 0.00 1.02398986

330.8167 0.00 0.00 0.96296967

328.4051 0.00 0.00 0.90476391

325.9723 0.00 0.00 0.84932744

323.5247 0.00 0.00 0.79652170

321.0583 0.00 0.00 0.74627066

318.5694 0.00 0.00 0.69851661

316.0679 0.00 0.00 0.65312170

312.2728 0.00 0.00 0.58932064

308.4346 0.00 0.00 0.53041804

304.5444 0.00 0.00 0.47615435

300.6113 0.00 0.00 0.42624143

295.0788 0.00 0.00 0.36388839

295.0788 0.00 0.00 0.30267217

295.0788 0.00 0.00 0.24993006

295.0788 0.00 0.00 0.21649992

295.0788 0.00 0.00 0.18755608

295.0788 0.00 0.00 0.14766182

295.0788 0.00 0.00 0.11627384

295.0788 0.00 0.00 0.09157509

295.9402 0.00 0.00 0.07174076

Sample Case

The sample case used to demonstrate operation of the SHOCKN and ZEPHYRUS
codes is based on the numerical exercise reported by Cleveland 5, for reasons

explained in the section comparing the two codes. This section is only concerned
with setting up inputs to ZEPHYRUS and running the program.



This is a NASA shaped wave obtained with the SHOCKN Code as a test case.

It is for a conceptual "low-boom" airplane at Mach 1.8, 48000 ft alt.

This waveform is 600 ft below the airplane, or 721.6 ft along the direction

of propagation. 721.6 ft is as long as 219.9 meters, by the way.

Time(sec)

-0.00452680

-0.00377230

-0.00233890

-0.00226340

0.00218430

0.00663210

0.0110798

0.0137691

0.0164584

0.0191477

0.0218370

0.0245263

0.0272155

0.0299048

0.0325941

0.0352834

0.0379727

0 0406620

0 0433513

0 0460406

0 0487299

0 0514192

0 0541085

0 0567977

0 0594870

0 0621763

0 0648656

0 0675549

0 0702442

0 0729335

0 0756228

0 0783121

0.0810014

0.0836907

0.0863799

0.0890692

0.0917585

0.0944478

0.0971371

0.0998264

0.102516

0.105205

0.107894

0.110583

0.113273

0.115962

0.118651

0.121341

0.124030

0.152310

0.155OOO

0.157689

Overpressure (Pascals)

@

0.00000

37.2812

74.5622

111.843

95.6056

79.3679

63.1301

64.9828

66.8356

68.6883

70.5410

72.3936

74.2465

76.0991

77.9518

79.8045

81.6572

83.5100

85.3627

87.2153

89.0680

90.9208

92.7735

94.6262

96.4789

98.3317

100.184

102.037

103.890

105.743

107.595

109.448

111.301

113.153

115.006

116.859

118.711

120.564

122.417

124.270

126.122

127.975

129 828

131 680

133 533

135 386

137 239

139 091

140 944

-120 476

-118 624

-116 771
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0.160378

0.163068

0.165757

0.168446

0.171135

0.173825

0.176514

0.179203

0.181893

0.185000

0.188763

0.190743

0.192932

0.195255

0.197670

0.200153

0.202689

0.205266

0.207877

0.210516

0.213178

0.215860

O.3OOOOO

-114.918

-113.065

-111.213

-109.360

-107.507

-105.655

-103.802

-101.949

-100.096

-244.050

-82.2210

-73.0696

-66.0741

-60.4474

-55.7730

-51.8009

-48.3685

-45.3637

-42.7057

-40.3339

-38.2022

-36.2744

0.00000
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This is the file for parameters used to set up the ray path calculation in RAYTRACE.
In this example, only the single ray directly under the aircraft is calculated. The
value of errortol sets the distance between points and usually needs to be optimized

for accuracy and running time for wave propagation. For the short extrapolations in

this report the value is not critical.

This is for a NASA shaped wave obtained with the SHOCKN Code as a test case.

It is for a conceptual "low-boom" airplane at Mach 1.8, 48000 ft alt.

sourcdir is the source direction in degrees ( zero = to East, not compass),

sourcez0 is the source altitude of 48000.0 feet cast in meters,

sourcedir sourcez0 sourcex0 sourcey0 sourcev

(degrees) (meters) (meters) (meters) (Mach)
......

0.0 14630.0 0. 0. 1.800

rayt0 raytf rayti

(seconds) (seconds) (seconds)

@
0 0 1

rayphi0 rayphif

(degrees) (degrees)

0.00 0.00

rayphii

(degrees)

......

1.0

Errortol stepstart

(seconds)

@
0.0001 2.0

xcritical ycritical zcritical

(meters) (meters) (meters)
@

-I.0 -i.0 -i.0

zreceiver

(meters)

@
7315.
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The wave propagation along a ray is set by this set of parameters. Frequently, the
power of 2, resampratio and attensampm are adjusted for best performance for an

individual propagation.

This is the primary boom test case using a NASA shaped wave.

It is for a conceptual "low-boom" airplane at Mach 1.8, 48000 ft alt.

The airplane-waveform geometry is:

vertical distance from aircraft to waveform: 600.0 feet (182.9 meters)

with Mach number = 1.8, Co-Mach angle: 56.25 degrees

rest frame path length from airplane to signature: 721.6 feet (219.9

meters).

start distance (meters) characteristic time of waveform (sec)

219.9 0.401427

rel hum (%) power of 2 padding ratio attenuation threshold

@

20 14 0.50 9

nonlinear absorption dispersion
@

1 1 1

resampratio stepratio

@
30 5

ground impedance

6.0e06

ground flow resistivity
@

270.0

reflectcoeff

@

attenerrorthresh attensampm

@
0.00001 ii
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Outputs

The following is a typical commentary produced by the code when it is run. Other

files are constructed to plot the pressure wave, risetime and other wave parameters.

After the ZEPHYRUS propagation is concluded, the waveforms are automatically

processed through the Sonic Boom Toolbox module, LOUDBOOM, which performs

acoustic analysis of the waveforms. Frequency spectra are generated and metrics
which estimate loudness are calculated. The meaning of the acoustic analysis is

discussed in the following section discussing ZEPHYRUS propagation compared to
measurement.

######################### getparams #########################

Enter name of input file containing propagation parameters: primary.propin

Enter name of input file containing ray data: primary.fan

Enter ray numbers (m [source time],n [ray angle]): 0 0

Total ray path length is 43904.0 meters with 77 points.

Enter name of input file containing the starting waveform: nasa/wave

######################### computeparams #########################

Enter name of output file for new ray parameters: primary.ray

######################### propagate #########################

Enter name of output file for waveforms along ray: primary_wave.ggp

Enter name of output file for rise-time function: primary.rip

Enter name of LoudBoom style file for pressure signatures: primary.lbin

Path Length= 220 Time= 0.75 S_00000219 *** Starting signature ***(76 points)

Path Length= 1277 Time= 4.33 S_00001276 Ordinary Pt, Alt=13568 m (120 points)

Path Length= 3333 Time= 11.30 S_00003333 Ordinary Pt, Alt=l1859 m (180 points)

Path Length= 7178 Time= 24.16 S_00007178 Ordinary Pt, Alt= 8680 m (181 points)

Path Length= 8854 Time= 29.60 S_00008854 Reciever at Alt= 7315 m (500 points)

Path Length=f5975 Time= 51.68 S_00015975 Ordinary Pt, Alt= 1660 m (300 points)

Path Length=18123 Time = 58.06 S_00018123 **At Ground Reflection **(333 points)

Reflection coefficient 'i' applied to 12618 wavepoints

Path Length=18123 Time= 58.06 S_00018123 Leaving Ground Reflection(333 points)

Path Length=27393 Time= 86.51 S_00027392 Reciever at Alt= 7315 m (370 points)

Path Length=30151 Time = 95.52 S 00030150 Ordinary Pt, Alt= 9568 m (368 points)

Path Length=38391 Time=123.38 S=00038391 Ordinary Pt, Alt=16413 m (281 points)

Path Length=43904 Time=142.06 S_00043904 End of ray, Alt=20996 m (255 points)

##### Start LoudBoom with inputs: primary.lbin

LoudBoom SampleRate for signature Sig53.00 is 53000 Hz

description *** S 00000219 *** Starting signature ** Time= 0.75 Dist=0

weightl: PERCEIVED LEVEL SPLPL = 110.673 dB

LoudBoom SampleRate for signature Sig53.01 is 53000 Hz

description *** S 00001276 Ordinary Pt, Alt= 13568 m Time= 4.33 Dist=0.501946

weightl: PERCEIVED LEVEL SPLPL = 105.538 dB

LoudBoom SampleRate for signature Sig53.02 is 52000 Hz

description *** S 00003333 Ordinary Pt, Alt= 11859 m Time=ll.30 Dist=0.981938

weightl: PERCEIVED LEVEL SPLPL = 99.375 dB

LoudBoom SampleRate for signature Sig53.03 is 52000 Hz

description *** S 00007178 Ordinary Pt, Aft = 8680 m Time=24.16 Dist=l.46394

weightl: PERCEIVED LEVEL SPLPL = 97.597 dB

LoudBoom SampleRate for signature Sig53.04 is 52000 Hz

description *** S 00008854 ****** At Reciever ****** Time=29.60 Dist=l.59792

weightl: PERCEIVED LEVEL SPLPL = 93.453 dB

LoudBoom SampleRate for signature Sig53.05 is 52000 Hz

description *** S 00015975 Ordinary Pt, Aft = 1660 m Time=51.68 Dist=l.94407

-- 14--



weightl: PERCEIVEDLEVELSPLPL= 92.240 dB
LoudBoomSampleRatefor signature Sig53.06 is 52000Hz

description *** S 00018123 ** At GroundReflection **Time=58.06 Dist=2.00846
weightl: PERCEIVEDLEVELSPLPL= 90.823 dB

Special Ground Reflection Calculation with Kr=l.9
LoudBoomSampleRatefor signature Sig53.06 is 52000Hz

description *** S 00018123 ** At GroundReflection **Time=58.06 Dist=2.00846
weightl: PERCEIVEDLEVELSPLPL= 96.780 dB
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Comparison of SHOCKN and ZEPHYRUS

Introduction

The sample case used to demonstrate operation of the SHOCKN and ZEPHYRUS

codes is based on the numerical exercise reported by Cleveland 5. Using the same

shaped (ramp) source waveform, the atmosphere was changed to the Standard
Atmosphere with the motivation of comparing the codes under more realistic

conditions. Cleveland's study focused on the theoretical aspects of wave propagation
and their practical implementation into propagation codes. The current effort is

concerned with extending these results to practical design analysis.

The input pressure signature is a "ramp" waveform at a distance of 183meters (600

feet) directly below the source, flying at 14,630m (48,000 feet) altitude with a Mach

number of 1.8. The waveform is not representative of a real aircraft configuration,
but came from 10studies of shaping the source waveform for reduced annoyance . The

unusual shape with distinct shocks highlights nonlinear (wave steepening) and
absorption mechanisms during propagation.

3.0

2.0

1.0

0.0

_ -1.

_ -2.

0

TIME (seconds)

Figure i Source Waveform for sample case
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Impact of Standard Atmosphere

Cleveland's study used a uniform atmosphere and an isothermal atmosphere to

progressively introduce absorptive phenomena. The temperature of these two
atmospheres was set at -69.7 F (216.7K), a temperature representative of the

stratosphere. This study introduces the standard atmosphere to better quantify

absorption in practical analysis. The waveforms presented below are for waves at the

ground, with a ground reflection factor of 1.9 multiplying the propagated pressures to

simulate the signature as it would be heard by an observer.

¢,q

Standard Atmosphere

Isothermal
(-69.7F)

Uniform

(-69. 7 F)

1.9 Ground reflection factor

TIME (0.1 seconds per tickmark)

Figure 2 Ground Signatures for sample case for three different atmospheres

The standard atmosphere gives results very close to the isothermal case, suggesting

that the initial propagation (where the atmosphere is similar for both cases)

dominates the waveform evolution. Overall, the standard atmosphere results in

slightly more attenuation (lower pressures) and the same wave steepening (same
duration) as the isothermal case.

- 17-



Comparison Results

Since the standard atmosphere gives results close the isothermal atmosphere results,
the same good agreement noted by Cleveland applies here. ZEPHYRUS shows the
same wave shape, location of shocks and duration, as seen in Figure 3. Pressures for
the ZEPHYRUS propagation are slightly higher and are generally smoother. The
minor fluctuations in the SHOCKN case are similar to Cleveland's results and he

suggests them to be due to calculational inexactitudes introduced by the large
number of Fast Fourier Transform operations.

Solid line: SHOCKN

Dash line: ZEPHYRUS

1.9 Ground reflection factor

TIME (0.1 second per tickmark)

Figure 3 Ground Signatures for sample case propagated with SHOCKN and
ZEPHYRUS

As suggested by the shape and duration similarity of the two propagations, the
overall sound energy/pressure is essentially the same between SHOCKN and
ZEPHYRUS, being controlled by the high noise levels at low frequency (below 40 Hz).
See Figure 4 on the following page. However, the implied increase in risetime by the
peak pressure reduction over the same duration of the SHOCKN propagation reduces
the high frequency content of the noise spectrum, with a corresponding reduction in

"ear weighted" noise metrics (five PLdB reduction, for example).
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60.0

&

Solid line: SHOCKN

OASPL= 121 dB

SPL-A = 78 dB

SPL-C-- 99 dB

PL= 92 dB

Dash line: ZEPHYRUS

OASPL= 121 dB

SPL-A= 84 dB

SPL-C= 100 dB

PL= 97 dB

40.0

1.9 Ground reflection factor

10 100 1000

1/3 Octave Band Center Frequency (Hz)

I

I0000

Figure 4 Noise Spectra for sample case propagated with SHOCKN and ZEPHYRUS

For propagation conditions of practical interest, SHOCKN and ZEPHYRUS give the

same results. Since they are different implementations of the same physics of the
propagation of sonic booms in air, they serve to verify that each implementation has

been constructed properly. In addition, ZEPHYRUS offers greater flexibility by

allowing winds, ray paths off of the centerline and easy changes to the atmosphere

profile. Because of this greater capability, ZEPHYRUS is preferred for solving
general propagation problems.
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Comparison to Experiment

SR71 Flight Test Summary

Data are becoming available from a 1995 flight test of the SR- 71 using a novel
technique of probing the pressure field near the aircraft using a F-16XL chase plane
flown through the shock waves 11. Measurements taken around 1000 feet and 5000
feet from the SR-71 were used in an initial verification of the sonic boom

propagation codes. The data used were taken on March 16, 1995, with most of the
data obtained between 0930 and 1025 PST.

The data supplied by NASA include the weather conditions, flight condition
information for both SR-71 and F-16XL and the pressure signature located in space

relative to the SR-71. These pressure points were converted to a local pressure-
time history based on a simplification to constant lateral and vertical separation and
constant probing speed. Appendix A presents the flight data, allowing evaluation of

the quality of these assumptions.

Nine of the twenty measurements taken at this range of distances are useful for this
exercise. The measurements naturally group into three sets of "near" and "far"

pairs, based on the angle from the vertical centerline of the SR-71.

Weather Conditions

Edwards sky condition reports were 22 Kfeet (AGL) scattered clouds at takeoff time
and 20Kfeet thin broken clouds the following two hours. Prevailing surface winds

were light, with less than five knots at Edwards AFB. Surface temperatures during
the day are estimated at 56 to 63 F at Edwards, 62 to 66 F at Mojave, and 68 to 74 F
at China Lake, based on hourly measurements. At the ground boom-sensor (PATS)
site they are roughly estimated to have been 65 +/- 6 E

The weather pattern was dominated by a surface high pressure in the Idaho
Mountain area with a weak offshore pressure gradient in the Nevada-California

area. The pressure dropped approximately 4 mb from the high to southern Nevada
and another 4 mb to the California coast. In the morning winds aloft were light at

low levles and westerly from 17 to 47 knots between 20 and 50 Kfeet MSL altitude.

By mid-afternoon winds increased approximately 20 knots between 20 and 35 Kfeet.
IR and moisture satellite imagery showed that a high cloud region trailed across
southern California from a core in central Nevada, in advance of a trough aloft. The

trough passed Edwards by sundown bringing clear skies from the northwest.

Analysis of upper air synoptic charts and interpolation to flight time indicated that
the early morning air profile measurement would be more representative of
conditions at flight time than the afternoon observation. Temperature adjustments

of i degree C or less, and some wind increases reaching about 20 knots were made for
the reference air profile based at the Edward location. Larger temperature
modifications were made in the surface layer on the basis of the hourly temperature
observations.

Pressure heights nominally agree to better than 40 feet. At the surface the semi-
diurnal pressure oscillation peak was 66 feet at 6:00 PM. Hence, an approximate
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adjustment of 46 feet was used for the linearly interpolated synoptic heights derived

from noon on March 16 and midnight on March 17 charts. Temperatures at

mandatory levels agree to better than 1 deg C at altitudes above 10 Kfeet. Upper
level humidities increased from near 25% in the early morning to near 60% in the

afternoon. The reference humidity profile values represent a subjectively smoothed

interpolation.

The following listing is the air profile configured for use by the sonic boom

propagation program, ZEPHYRUS. The entry for zero altitude (required for
ZEPHYRUS code) was created from extrapolated temperature and pressure data

(24.0 C and 1013.26 mB respectively).

ZEPHYRUS style air profile from SR71 Flight Data

***************************************************************************

Altitude Sound Speed Wind Velocity Wind Velocity Air

in X-Direction in Y-Direction Density

(Eastwardness) (Northwardness) (specific weight)

(meters) (m/s) (m/s) (m/s) (kg/m3)

0.0 345.580

2000.0 341.544

2302.3 340.307

2403.3 339.893

2605.9 339.301

2908.6 339.301

2915.3 339.301

3036.4 339.479

3536.1 339.834

4035.8 340.011

4153.8 340.247

4946.9 339.360

5035.4 339.242

5997.8 337.817

6034.6 337.817

7036.4 338.233

8035.0 337.401

10232.5 334.229

14033.6 328.529

16032.2 325.950

18887.8 321.167

20033.4 319.725

24272.3 313.505

28023.9 307.486

30813.8 302.279

34714.2 295.217

36002.3 293.099

36999.0 291.655

39321.3 295.285

-1.18

-1.18

-1.18

-1.18

-1.09

-0.99

-0.99

-0.99

-0.59

-0.51

-0.51

-0.51

-0.51

O.O7

0.91

2.67

2 22

3 60

6 25

8 O6

Ii 32

1400

1487

16.35

18.49

24.20

23.53

21.93

18.53

-0.99 1.1879087

-0.99 1.1347605

-0.99 1.1306385

-0.99 1.1292713

-1.09 1.1249437

-1.18 1.1126849

-1.18 1.1124173

-1.18 1.1063939

-0.84 1.0843346

-0.89 1.0638506

-0.89 1.0578623

-0.89 1.0333713

-0.89 1.0307840

-1.03 1.0036965

-0.16 1.0023469

1.54 0.9639376

2.64 0.9339329

2.92 0.8773427

2.92 0.7858023

2.16 0.7384183

0.20 0.6786824

0.00 0.6536466

1.30 0.5698102

2.01 0.5035302

1.29 0.4596891

0.00 0.4016229

0.00 0.3829193

0.00 0.3683661

0.00 0.3211502
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Selected Flight Conditions

The "mid-field" data from Flight 24 were selected for this study, which includes
twenty measurements. Within this set, fourteen signatures were examined for use in
the code verification exercise. Measurements 9 and 13 were rejected because the

lateral angle (PHI) was much greater than the other measurement conditions.
Measurements 12, 18 and 20 were rejected because the flight direction of the probing
aircraft was very non-parallel to the SR-71 during measurement. Measurement
12, in particular, did not even traverse the length of the sonic boom waveform. The
acceptable measurements, with parameters of interest for the analytic projection are
listed in the following table.

Time

Measure Signature Signature dz0 dy0 Phi
ment Start End feet feet deg

SAM SAM

1 63001 63006 757.1 -17.1 -1.3

2 63035 63039 866.8 -90.3 -5.9

3 63392 63395 1372.1 107.2 +4.5

4 63438 63441 1991.8 26.8 +0.8

5 63492 63495 1871.6 48.0 +1.5

6 63949 63954

7 63994 63997

8 64078 64081

10

11

64310

64320

64317

64327

65732

Probing Conditions

845.3 -10.0 -0.7

762.6 -67.3 -5.0

567.8 -54.9 -5.5

5323.2

5215.5

1752.4

-198.6

395.3

34.2

-2.1

+4.3

+1.114 65729

15 65759 65761 956.9 -135.7 -8.1

16 65811 65815 714.3 -6.8 -0.5

17 65841 65845 1073.0 -53.9 -2.9

662266622319 -878.35127.1

SR71F_ght

Mach speed
fps

1.24 1281.2

1.24 1285.9

1.26 1205.4

1.26 1197.8

1_5 1192.1

1.25 1297.1

1.25 1294.5

1.26 1306.8

1.25 1191.7

1.24 1184.8

1.26 1310.3

1.27 1313.4

1.25 1300.7

1.26 1306.5

-9.7 1.26

Alt GW
feet klb

31140 118.0

31082 116.7

30961 109.0

31007 107.8

31081 106.4

31163 103.2

31162 102.5

31097 101.7

30991 97.8

31012 97.3

31147 86.0

31128 85.8

31142 85.3

31181 84.6

31126 78.8 1195.2

Figure 5 Flight Conditions for SR-71 Flight Test

The signature start and end times in the above table, measured in Seconds After
Midnight (SAM), are not the start and end times for data acquisition as listed in
other test documentation but rather represent the duration of the actual boom

signature, taken to the nearest whole second outside the actual signature. These
boundaries were established by inspection while preparing the data as described in
the following section.

With Mach number essentially constant at 1.25 and source altitude at 31,100 ft,
examination of measurement distance and angle suggests comparison of "near"
(around 1000 feet) and "far" (around 5000 feet) signatures at angles of -8.9, -1.6,
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and 4.4 degrees from vertical downward. This is shown in the following graph. The
"near" signature will be projected to the "far" distance for each set.

¢D

o

I

o

eD

6000- -

u B

4000- -

2000" -

m

0

-12

287

I, 1 1
-8 -4

C
i
i
|

0 4

.)

)

8

Angle from vertical downward, degrees

Figure 6 Selection of "Near" and "Far" Measurements for ZEPHYRUS Propagation

Derivation of Measured Waveforms for Extrapolation

The key measurement supplied from the SR71 flight test was pressure versus

longitudinal distance relative to the SR-71. However, to use the measurement in the

propagation code, it needs to be converted to pressure versus time at a fixed point in

space. If the fLxed point is chosen as the start of the signature (local longitudinal
distance, dx0=0) at position (local lateral distance, dy0), (local vertical distance, dz0)

relative to the the SR-71 nose (the origin of the coordinate system tied to the

SR-71) it will be appreciated that if dy0, dz0 and the SR-71 velocity are

independent of time, a longitudinal point at dx will arrive at the fixed point after the
time interval:

(incremental time of arrival, dt) = (longitudinal distance, dx)/[-(SR-71 speed)]

where the negative sign is required because of direction of flight of the SR- 71 in the

earth-based frame of reference. Because the real signature exists in three-

dimensional space and assumptions listed above were not strictly fulfilled, the ability

of a calculated value of dt based on a measured value of dx0 to correctly describe the

time sequence of the pressure signature is suspect. The degree of suspicion for

individual signatures may be assessed from examination of the distance by which dy0
and dz0 deviate from their average value as well as how steady the SR-71 speed is.

This information is presented in Appendix A. The resolution was to add the

assumption that the relative speed of the SR-71 and the measurement probe in the
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longitudinal direction is constant. The line comparing averagedx0/(measurement
time) to actual dx0 is also shown in Appendix A.

For the nine signatures used for propagation, Appendix B showsthe derived
signature time histories. Of particular interest is the variation in signature duration,
or length (since the speedis known). The far signatures are either extremely short
(#10) or long (#11 and #19) and also have noticeable "fuzz" (short duration pressure
fluctuations) in the data. The far measurements were also taken with the probe
aircraft trajectory the most non-parallel to the SR-71 flight path. Extreme pressure
spikes, which tend to be in adjacent pairs of values distinctly aboveand below the
local averagevalue, were manually deleted in the three far waveforms in order to
reduce the number of points that ZEPHYRUS would consider significant on output to
an amount within the current capability of the code. Points were only deleted away
from shocks to preserve the character of the waveforms.

# Signature

feet

Signature
Length

Percent of

SR-71 length

Relative
DistanceDuration

sea

130 Near

Fuzz in data

Little1 0.1101 141.1

3 0.0983 118.5 110 Near Little

6 0.0988 127.5 119 Near Little

10 0.0659 78.5 73 Far Yes

11 0.2060 244.1 227 Far Yes

79

111

84.5

119.2

Near

Near

Near

Far

Little

Little

Little

Yes

15 0.0643

16 0.0916

17 0.1201

19 0.1509

156.9

180.3

146

168

Figure 7 Measured Signature Durations
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Analytic Propagation

"Near" measurements 1, 3, 6, 15, 16, and 17 were extrapolated from their
measurement location to their corresponding "far" signature locations. The "far"

measurements were also processed through the extrapolation code without changing
the signature location in order to generate waveform fries in the same format as the
extrapolated near measurements. Since the extrapolated signatures were compared
to measurements made "in the air", the ground reflection factor was set to 1.0 (no

reflection). The following table lists several parameters important to setting up
inputs to the ZEPHYRUS code and the distances between the "source", "signature"
and "receiver". The source is the SR-71 generating a pressure signal, the signature
is the pressure signal actually measured by the F-16XL and the receiver is a
conceptual device detecting the pressure signal after it has propagated to a new
location. The propagation distance in the table describes where the new location is.

# Propagation Parameters Propagation Distances

Mach

1

15 1.265

19 1.262

1 1.237

6 1.252

16 1.254

17 1.261

10 1.249

3 1.262

11 1.244

Heading
degrees Duration

62

242

61

61

62

62

242

242

243

Wave Average
PHI

sea angle

degrees

0.0643 -8.9

0.1509 -8.9

0.1101 -1.6

O.O988 -1.6

0.0916 -1.6

0.1201 -1.6

O.O659 -1.6

0.0983 4.4

0.2060 4.4

(SR-71)
Source

Altitude
feet

31128

31127

31141

31165

Vertical
Distance

(dz0)
feet

957

5127

757

845

Signature
Altitude

feet

30171

26000

30384

30320

Receiver
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Figure 8 Propagation Parameters for ZEPHYRUS
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Propagation parameters have to be "tuned" to each ZEPHYRUS propagation. Since

these data have many points in each signature and are propagated only a short

distance, the propagation parameters are different than those used in the example
ease:

rel hum (%)

45.0

nonlinear

l(yes)

resampratio

25

ground impedance

6.0e06

reflectcoeff

@
l(hard ground)

attenerrorthresh

power of 2 padding ratio

14 0.25

absorption dispersion
@

l(yes)

stepratio

@
i0

ground

1 (yes)

flow resistivity

@

270.0

attensampm

@
0.000001 12

attenuation threshold

@

Although the range of distance from "near" to "far" is not great, the expected trends

of increased duration, shock coalescence and peak pressure reduction are still seen.

Appendix C presents plots comparing "near" measured signatures to the extrapolated

signatures.
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Comparison of Measured and Analytic Waveforms

First of all, it should be remembered that the range of extrapolation is not great for
this initial set of data. The "far" signature, approximately fifty body lengths away
from the source, shows some effects of non-linear steepening, with pressures
reduced by a factor of two to three and duration slightly increased, as shown by the
signatures in Appendix C. Most of the "fuzz" in the measurement has been smoothed
out but significant shocks from bow, canopy, and inlets are still evident in the
propagated waves.

The following plots compare extrapolated waveforms to measured waveforms as
would be measured by the probe aircraft, that is, with no pressure increase due to
ground reflection (ground reflection factor equal to one). Considering pressure
versus time, two of the comparisons (#15-#19 and #3-#11) show the extrapolated
signature to be of much shorter duration than the signature measured at the far
position.
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Figure 9 Time History for Measurements #3 and #11
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Figure 10 Time History for Measurements #15 and #19
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Figure 11 Time History for Measurements #1 and #10
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Figure 12 Time History for Measurements #6 and #10
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Figure 13 Time History for Measurements #16 and #10
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Figure 14 Time History for Measurements #17 and #10
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In each of the comparisons, the measured far signature is at odds with expectation.

The signature generated at the aircraft is essentially the length of the aircraft, and
will only get longer with distance away from the source. Simple theoretical

considerations12-indicate the signature duration should grow at (ratio of distance) v',

which is somewhat faster than the duration growth rate seen in the detailed

propagations of Appendix C. Nevertheless, this indicates that it is primarily the

measured "far" signatures that are not consistent. Measurement 10 is too short and
measurement 11 is too long. Measurement 19 is actually close to the expected

duration, but is paired with the shortest duration "near" signature.

During informal discussion of these results with Ed Haering 11 of Dryden Flight

Research Center, he suggested a refined data reduction method that appears to
resolve these duration anomalies. Rather than setting the lateral (dy0) and vertical

(dz0) distances to the average value, the radial distance from the SR-71,

dr0 = _/(dyo 2 + dzo 2) (at each measurement point)

is calculated as the perpendicular component of the ray from the point of signal

generation at the SR-71 to the point of measurement, drar The longitudinal

component of dray is then found from the Mach angle, w,

_t= arcsine (1.0 / (Mach SR-71)

dxray - dray / tan

dxray is then added to the geometrical longitudinal distance, xo, resulting in a total
distance back from the nose of the SR-71,

dback = dx0 + dxray = dx0 + (dray/tan _t)

The distance dback is then converted to time at a fixed point in space using the same

equation as the simplified procedure;

incremental time of arrival = dback / [-(SR-71 speed)]

where again the negative sign is needed to reconcile the coordinate system local to the

SR-71 to the ground based coordinate system. Note that the additional term, dxray '
has a constant value under the simplified procedure and would only shift the time

axis but has a variable value in the new procedure and decreases the relative time of

points measured closer to the SR-71.

Pressures of the shocks within the waveform match very well between the measured

and extrapolated waveforms, both the peak overpressures and intermediate peaks

from nose, canopy and other details of the aircraft geometry. Thus, by employing the

proposed new conversion for incremental time to resolve duration differences, the

prediction should match the measured signatures.
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Noise Metrics

The frequency spectra and integrated noise metrics for each signature time history

were calculated using procedures outlined in Reference 13. Additionally, Reference
14 describes the details of calculating the integrated metric, Perceived Level, which

has been found to give the best estimate of annoyance reaction to sonic boom
signatures. Because Perceived Level is calculated differently than the conventional

dB(A), dB(C) metrics, the procedure is outlined in Appendix D.

Reference 13 includes an instructive discussion of which aspects of a general

N-wave signature affect the sound spectrum. The salient aspects to the results of

this study are the similarity in low frequency (below 300 Hz) sound pressure levels

due to the similarity of peak pressures in the various signatures and the dissimilarity

of high frequency noise due to duration variation changing the time from beginning

of signature to peak pressure (an implied risetime). The duration/risetime also shifts

the specific frequencies that the low frequency maxima occur at, which changes the

overall energy of the spectra because the maxima fall along a six dB/octave slope from
the peak SPL. The change is three to four decibels in sound pressure level for the

signatures in these comparisons.

Measurement
Number

15 extrapolated

Peak
Pressure

psf

2.111

Signature Parameters

Wave
Duration

sec

0.0603

Overall
Sound

Pressure
Level

dB

120

Perceived
Level
PLdB

115

19measured 2.208 0.1509 123 112

I extrapolated 2.692 0.1006 121 116

6 extrapolated 2.752 0.0953 120 115

16extrapolated 2.367 0.0848 119 115

17extrapolated 2.475 0.1168 121 115

2.627 0.0659 118 11910 measured

3 extrapolated 1170.09352.559 114

llmeasured 2.339 0.2060 121 108

Figure 15 Extrapolated Signature Characteristics

Comments on specific comparisons of spectra are illustrated by plots following these

two paragraphs. The pairs, measurements #15-#19 and #3-#11, feature an

increase in OASPL (extrapolated to measured) but a decrease in PLdB. Additional

acoustic energy indicated by the increase in OASPL is at frequencies below 10 Hz (as

discussed above) which contributes very little to the annoyance response indicated by

PLdB. This energy appears to have partially come from frequencies above 1000 Hz,

thus encouraging reduction of PLdB. Measurements #3-#11, in particular, show

well defined peaks and valleys in their spectra, illustrating how duration shifts the

frequency of the acoustic energy distribution.
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The four extrapolated signatures compared to measurement #10 are substantially the

same, with a spread in noise levels of only two decibels. Extrapolated durations are

all close to 0.1 second. They are compared to a far signature of 0.7 seconds duration,

so the ratio of durations (extrapolated to measured) is much closer to unity than the

previously discussed pairs. The high frequency spectra are also close, as would be
expected, but low frequency shifting of spectral peaks and valleys is still evident,

resulting in the three to four decibel differences between the extrapolated and
measured noise metrics.
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• v 117. 4dB
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Figure 16 Spectra for Measurements #3 and #11
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Figure 17 Spectra for Measurements #15 and #19
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Figure 19 Spectra for Measurements #1 and #6
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Conclusions

Propagation Codes

The sonic boom propagation codes reviewed in this study, SHOCKN and ZEPHYRUS,
implement current theory on air absorption using different computational concepts.
Review of the codes with a realistic atmosphere model conf'nun the agreement of

propagation results reported by others for simplified propagation conditions.
ZEPHYRUS offers greater flexibility in propagation conditions and is thus preferred
for practical aircraft analysis.

Comparison to Measurement

The ZEPHYRUS code was used to propagate sonic boom waveforms measured

approximately 1000 feet away from an SR-71 aircraft flying at Mach 1.25 to 5000
feet away. These extrapolated signatures were compared to measurements at 5000
feet. Pressure values of the significant shocks (bow, canopy, inlet and tail) in the
waveforms are consistent between extrapolation and measurement. Of particular
interest is that four (independent) measurements taken under the aircraft centerline

converge to the same extrapolated result despite differences in measurement
conditions. Extrapolated and measured signature durations disagree because the
measured duration of the 5000 foot signatures either much longer or shorter than

would be expected. The measured durations are 0.07 seconds, 0.21 seconds and 0.15
seconds where a value of 0.1 might be expected.

These duration anomalies may have been introduced by the simplified method of

converting the measured pressure at a position relative to the SR-71 to a time
history at a fixed point in space. A more refined procedure has been suggested that
accounts for changes in SR-71 speed and position of the probe aircraft during
pressure measurement. Implementation of this procedure by others indicates a much
better resolution of near and far measurements.
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Appendix A
SR-71 Measured Pressure Signatures and Flight Conditions

Measurements of primary interest for sonic boom propagation study are the aircraft

(source) location and the signature pressures and location away from the aircraft.

Current propagation codes generally require non-accelerated flight, and ZEPHYRUS

in particular, requires steady level flight. The measured aircraft position and speed
for the 1995 SR-71 flight test (flight #24) are compared to the average values in this

appendix. The measurements taken around 5000 feet from the source are less steady

and less parallel the source than the measurements taken less than 1000 feet from
the source, introducing more uncertainty to the propagation validation.

Time Probing Conditions SR71 Flight

Measure Signature Signature dz0 dy0 Phi Mach speed
ment Start End ft f_ deg fps

SAM SAM

1 63001 63006 757.1 -17.1 -1.3 1.24 1281.2

2 63035 63039 866.8 -90.3 -5.9 1.24 1285.9

63392

63438

63492

63395

63441

63495

1372.1

1991.8

1871.6

107.2

26.8

48.0

+4.5

+0.8

+1.5

1.26

1.26

1.25

1205.4

1197.8

1192.1

6 63949 63954 845.3 -10.0 -0.7 1.25 1297.1

7 63994 63997 762.6 -67.3 -5.0 1.25 1294.5

8 64078 64081 567.8 -54.9 -5.5 1306.8

Alt GW
ft klb

31140 118.0

31082 116.7

30961 109.0

31007 107.8

31081 106.4

31163 103.2

31162 102.5

31O97 101.7

3O991 97.8

31012 97.3

31147 86.0

31128 85.8

31142 85.3

31181 84.6

31126 78.85127.1

10 64310 64317 5323.2 -198.6 -2.1

11 64320 64327 5215.5 395.3 +4.3

14 65729 65732 1752.4 34.2 +1.1

15 65759 65761 956.9 -135.7 -8.1

16 65811 65815 71_3 -6.8 -0.5

17 65841 65845 1073.0 -53.9 -2.9

19 66223 66226 -878.3 -9.7

1.26

1.25

1.24

1.26

1.27

1.25

1.26

1.26

The following plots show the measured data for each of the above measurements.

1191.7

1184.8

1310.3

1313.4

1300.7

1306.5

1195.2

Line segments show the range defining "the signature", set to the nearest whole

second beyond the (non-zero) pressure signature. The lines mark the average value

(dy0, dz0, vtotsr) or speed (dx0 vs time) over that duration of (measurement) time.

The values beyond the line segment are not included in calculating the averages.
The SR-71 source speed, vtotsr, is very steady over the signature duration. The

relative lateral (dy0) and vertical distance (dz0) tend to change steadily over time,

especially as distance between the SR-71 and the probe aircraft is increased. The

longitudinal position (dx0) has to change over time so the whole signature may be

measured. An average speed, dx0/dt, is plotted to show the unsteadiness in speed

during signature sampling.

- 37 -



Figure A.1 Measurement Number 1 of SR-71 Flight 24
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Figure A.2 Measurement Number 2 of SR- 71 Flight 24
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Figure A.3 Measurement Number 3 of SR-71 Flight 24
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Figure A.4 Measurement Number 4 of SR- 71 Flight 24
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Figure A.5 Measurement Number 5 of SR- 71 Flight 24
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Figure A.6 Measurement Number 6 of SR- 71 Flight 24
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Figure A.7 Measurement Number 7 of SR-71 Flight 24
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Figure A.8 Measurement Number 8 of SR- 71 Flight 24
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Figure A.9 Measurement Number 10 of SR- 71 Flight 24
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Figure A.10 Measurement Number 11 of SR-71 Flight 24
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Figure A.11 Measurement Number 14 of SR-71 Flight 24
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Figure A.12 Measurement Number 15 of SR-71 Flight 24
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Figure A.13 Measurement Number 16 of SR-71 Flight 24
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Figure A.14 Measurement Number 17 of SR-71 Flight 24
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Figure A.15 Measurement Number 19 of SR-71 Flight 24
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Appendix B
Signature Time Histories for Extrapolation

To prepare measurements of SR- 71 sonic boom pressure and location (relative to the

SR-71) for analytic propagation, they need to be converted to pressure versus time

at a fiLxed point in space. If the fixed point is chosen as the start of the signature
(local longitudinal distance, dx0=0) at position (local lateral distance, dy0), (local

vertical distance, dz0) relative to the the SR-71 nose (the origin of the coordinate

system tied to the SR-71) it will be appreciated that if dy0, dz0 and the SR-71

velocity are independent of time, a longitudinal point at dx will arrive at the fixed

point after the time interval:

(incremental time of arrival, dt) = (longitudinal distance, dx) / [-(SR-71 speed)]

where the negative sign is required because of direction of flight of the SR- 71 in the
earth-based frame of reference.

With the assumptions of dy0, dz0 and SR-71 velocity constant and dx0 a linear
function of measurement time, the above equation was solved for the nine signatures

used for propagation. The plots in this appendix show these pressure signatures.

# Mach

1 1.237

3 1.262

6 1.252

10 1.249

11 1.244

15 1.265

16 1.254

17 1.261

19 1.262

Wave Average PHI (SR-71) Vertical Signature
Duration angle Source Distance Altitude

sec degrees Altitude (dz0) feet
feet feet

0.2 - 1.6 31141 757 30384

0.2 4.4 30961 1372 29589

0.2 - 1.6 31165 845 30320

0.1 -1.6 30993 5323 25667

0.3 4.4 31011 5215 25796

0.1 -8.9 31128 957 30171

0.1 -1.6 31142 714 30428

0.2 - 1.6 31181 1073 30108

0.3 -8.9 31127 5127 26000
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Figure B.7 Time History for Measurement #16 of SR-71 Flight 24
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Figure B.9 Time History for Measurement #19 of SR-71 Flight 24
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Appendix C
Waveform Evolution

For the six examples of "near" waveforms propagated to "far" distances, the original

waveform is compared to the resulting far waveform after propagation. Pressures

have been reduced by a factor of two to three, duration has increased slightly and
most of the "fuzz" in the measurement has been smoothed out by non-linear

steepening effects. The significant shocks from bow, canopy, and inlets are still

evident in the propagated waves, however.

- 53 -



Figure C. 1 Extrapolation of Measurement Number i of SR-71 Flight 24
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Figure C.2 Extrapolation of Measurement Number 3 ofSR-71 Flight 24
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Figure C.3 Extrapolation of Measurement Number 6 of SR-71 Flight 24
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Figure C.4 Extrapolation of Measurement Number 15 ofSR-71 Flight24
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Figure C.5 Extrapolation of Measurement Number 16 ofSR-71 Flight24
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Figure C.6 Extrapolation of Measurement Number 17 of SR- 71 Flight24
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Appendix D
Calculation of Percieved Level
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